
N89-15608

Using Hypermedia to Develop an Intelligent TutoriaVDiagnostic
System for the Space Shuttle Main Engine Controller Lab

Daniel O’Reilly
Robert Williams
Kevin Yarbrough

Rocketdyne Division Rockwell Intl.
2227 Drake Ave. Suite 45
Huntsville Al. 35805

Abstract

This system is a tutorial/diagnostic system for training per-
sonnel in the use of the Space Shuttle Main Engine Controller
(SSMEC) Simulation Lab. It also provides a diagnostic capable of
isolating lab failures at least to the major lab component. The
system was implemented using Hypercard, which is an implementation
of hypermedia running on Apple Macintosh computers. Hypercard
proved to be a viable platform for the development and use of so-
phisticated tutorial systems and moderately capable diagnostic
systems.

This tutorial/diagnostic system uses the basic Hypercard
tools to provide the tutorial. The diagnostic part of the system
uses a simple interpreter written in the Hypercard language
(Hypertalk) to implement the backward chaining rule based logic
commonly found in diagnostic systems using Prolog.

Some of the advantages of Hypercard in developing this type
of system include sophisticated graphics capablility, the ability
to include digitized pictures, animation capability, sound and
voice capability, and its ability as a hypermedia tool. The major
disadvantage is the slow execution time for evaluation of rules
(due to the interpretive processing of the language). Other disad-
vantages include the limitation on the size of the cards, that
color is not supported, that it does not support grey scale graph-
ics, and its lack of selectable fonts for text fields.

Introduction

The lab for which the tutorial/diagnostic was developed
provides an integrated test environment for verifying the software
for the Space Shuttle Main Engine Controller (SSMEC). It includes
real and simulated engine hardware components. The lab software
controls the hardware through several computers to allow the test
engineer to force off-nominal conditions and record the reactions
of the SSMEC. The central theme followed in developing the lab was
that all actions and results for the tests to be conducted should
be contained in a single test procedure. Additionally, the entire
process should be automated to the point that the user could
conduct a series of tests by entering one command to the VAX.
Finally, all actions taken by the user, the lab components, and
the results must be logged such that one could exactly repeat a

467

test at a later date. Under these provisions many of the
machinations of the lab remain invisible to the user. This
tutorial and diagnostic was designed to help lab users to
understand the lab and isolate problems in the lab.

The Tutorial/Diagnostic

The prototype tutorial/diagnostic system was initially
implemented using Turbo Prolog on an IBM PC and later implemented
using Hypercard on a Macintosh (Hypercard is Apple's implementa-
tion of hypermedia). In ease of development, particularly in the
tutorial portion, Hypercard proved to be easier and faster to use
than Turbo Prolog. The Hypercard version includes extensive
graphics, some animation, and some sound.

The system addresses four major areas; the use of the
tutorial/diagnostic, conducting tests in the lab, the hardware
operation of the lab, and the diagnostic. The part illustrating
lab operations has not yet been completed. Four buttons on the top
card of the stack control entry into each of these areas. When the
user selects one of the buttons, this top card is "pushed" so that
is may later be "popped" in response to clicking a "return"
button. Figure 1 illustrates the top level layout.

The first area instructs the user in using the
tutorial/diagnostic. It attempts to illustrate rules the user can
use to recognize buttons, navigate through the system, and get
more information on a subject. To implement this area the
developers used only the most basic capabilities of Hypercard,
namely, graphics, text, buttons, push and pop, and linking cards.
This area has no links to the other three areas to prevent the

468

first time user from getting "lost" in the stack.
of cards from the other areas are used to illustrate the system.

Instead, copies

The area providing the tutorial on lab components consists of
a main path which includes a brief description of each of the
major components. Each of the descriptions of major components
provide two side paths; one to a more detailed operational
description of the component, and the other to a detailed hardware
description of the component. As in the first area, only the most
basic Hypercard capabilities were used. Figure 2 illustrates the
layout of this area.

- - - Hardware - -
General Description 0 p era t i onal

Description Component
Description

-

& - A
i I I

Opera ti onel U a r A . . . - r ^

Descriptic

I-
-

Hardware
Description

Opera ti onal
Description - General

Component

I I

Figure 2
Lab Component Description Layout

- I I I I

Three basic Hypercard linking mechanisms were used to control
navigation through the cards for these first three areas; direct
linking of cards, go to next or previous card, and push and pop.

Direct linking of cards displays another card in response to
a user action such as clicking on a button. The developers used
this mechanism to go to subsets of cards from a card with multiple
options. For instance, the top card of the stack gives the user
four options via buttons. Clicking one of these buttons causes
Hypercard to go to the first card of the subset for that option.
This mechanism was also used for "help" functions where the user
clicks on a button to acquire more information about a component
or a test.

Go to next or previous card provides a mechanism for the user
to move backward or forward to adjacent cards. This mechanism was
used to allow the user to move freely among cards of a subset.

Push and pop pushes a card to the stack or pops a card from
the stack. The developers used this mechanism to allow the user to

469 .

I

I
return from a subset to the card at which he chose the subset. For

the current card is pushed. The cards of the subset each have a
button for "return". When this button is clicked, the card on top
of the stack (in this case, the card from which the selection was
made) is popped. Since push and pop are an implementation of the
familiar stack operators, this mechanism may be used to llnestll
this return capability.

Through the use of these basic capabilities the developers
built in an orderly navigation scheme through the cards for the
tutorial parts of the system. One should note that these
capabilities may also be used to add implicit logic to the system
in that they can be used to implement trees. Figure 3 illustrate
the basic linking methods.

example, when the user clicks on the button to choose a subset,

The diagnostic comprises the fourth part of the system. This
part allows the user to isolate bad components in the lab by
answering a series of questions as to the symptoms exhibited at
various points in the lab. Initial attempts at implementing this
part included using a straight tree structure and then a modified
decision tree. Ultimately, the Hypertalk capability of Hypercard
was used to implement a Prolog-like rule based logic typical of
many diagnostic systems.

In the first attempt, the straight tree structure quickly
became too large to manage due to combinatorial expansion. In
addition to becoming difficult to manage, it required the
duplication of many of the symptom cards. Thus, for a system that
involves any complex interrelationships or that is of any size,
this method proves too cumbersome.

The next iteration attempted to simplify the tree by
"modularizing" some intermediate tests and calling them from nodes

4 7 0

in the tree. To implement this scheme the push and pop operators
provided a mechanism to return to the node in the tree which
called the intermediate test in order to continue the diagnostic.
However, this scheme proved lacking in that useful intermediate
tests were difficult to define due to the interrelationships of
the lab components.

The solution involved writing a script using Hypertalk to
emulate the backward chaining rule based logic typically used in
developing diagnostic systems with Prolog. This scheme proved to
be relatively simple to design and use and has the added advantage
of providing a shell that could be used for any diagnostic system.

The diagnostic uses four basic types of cards. These include
the beginning card, test cards, conclusion cards, and symptom
cards. Scripts at the stack level record the results of symptoms
and tests, evaluate tests, and provide the navigation among the
cards.

The beginning card serves as an introduction to the diagnos-
tic. When the user selects "continue", the script for the
"continue" button sends a messaqe to the handler that initializes
variables for the diagnostic session and pushes
onto the test stack. Figure 4 illustrates the
beginning card.

the first test
layout of the

Block diagram o f Lab

Name o f Return t o Continue I f i r s t t e s t t o p o f stack diagnostic

I

Figure 4
Layout of Beginning Card

Test cards actually define tests and mav themselves be
symptoms for other tests.- These cards contain a description of the
test in the language processed by the evaluation script. This
language basically allows the knowledge engineer to describe a
test in terms of boolean functions. The knowledge engineer enters
this description into background field 1 which covers the upper
2/3 of the card. The outline of the test is basically an "if-then-
else" statement where the conditions to be evaluated lie between
the if and the then keywords. Parentheses may be used to control

471

e v a l u a t i o n . S ince tes ts themselves e v a l u a t e t o t r u e o r fa lse , t h e y
may be used i n t h e d e s c r i p t i o n of o t h e r tes ts . However, a l l tes ts
must e v e n t u a l l y reduce t o a set o f symptoms. I f t h e u s e r i n a d v e r t -
e n t l y g e n e r a t e s an e n d l e s s loop (f o r example: making t es t A
dependent on t es t B which i s dependent on tes t C which i s
dependent on t es t A) t h e d i a g n o s t i c , a t run t i m e , w i l l p o s t an
e r r o r i n t h e message box. T e s t cards a l low t h e u s e r the o p t i o n s t o
c o n t i n u e t h e d i a g n o s t i c o r t o r e t u r n t o t h e beginning card. If t h e
u s e r elects t o c o n t i n u e t h e d i a g n o s t i c , t h e s c r i p t f o r t h a t b u t t o n
sends a message t o push t h e name of t h e tes t c a r d on the t e s t
s tack and t h e n sends a message t o e v a l u a t e t h e t es t a t the t o p of
t h e t es t s tack . F i g u r e 5 i l l u s t r a t e s t h e l a y o u t o f a t es t card.

R e s t a r t C o n t i n u e
D i a g n o s t i c D i a g n o s t i c

F i g u r e 5
Layout of a T e s t Card

Symptom cards ask t h e u s e r t o e n t e r t h e s t a t u s o f some tes t
p o i n t i n t h e lab. The u s e r selects a b u t t o n labelled "good" o r a
b u t t o n labelled "bad" t o i n d i c a t e s t a t u s a t t h a t p o i n t . C l i c k i n g
t h e b u t t o n sends a message t o a h a n d l e r a t t h e s tack level which
r e c o r d s t h e symptom and i t s s t a t u s . I t t h e n r e q u e s t s t h e
e v a l u a t i o n s c r i p t t o e v a l u a t e t h e t e s t . I n a d d i t i o n t o a c q u i r i n g
r e s u l t s , the symptom cards a l s o a l low t h e u s e r t o select, v i a
b u t t o n s , more i n f o r m a t i o n on t h e lab components and t h e tes t b e i n g
performed. F i g u r e 6 i l l u s t r a t e s t h e l a y o u t of a symptom card.

Conclusion cards p rov ide t h e message i d e n t i f y i n g t h e bad
component i f one i s found. Note t h a t a card s t a t i n g t h a t no bad
component cou ld be i d e n t i f i e d i s a l s o a conc lus ion card. The
knowledge e n g i n e e r e n t e r s these card names i n t h e " t r u e " p a t h of
t h e tes t d e s c r i p t i o n on a t es t card. When t h e t es t proves t r u e ,
t h i s card i s d i s p l a y e d . The conc lus ion card a l lows a u s e r t h e
c h o i c e of c o n t i n u i n g t h e search f o r bad components o r r e t u r n i n g t o
t h e beg inn ing card t o begin a new s e s s i o n . F i g u r e 7 i l l u s t r a t e s
t h e l a y o u t o f a conc lus ion card.

472

B l o c k d i a g r a m o f Lab

S y m p t o m Good Bad Restar t I q u e s t i o n a n s w e r a n s w e r diagnostic

Figure 6
Layout of a Symptom Card

B l o c k D i a g r a m o f Lab

R e s t a r t C o n t i n u e C o n c l u s i o n
\ D i a g n o s t i c D i a g n o s t i c

Figure 7
Layout of a Conclusion Card

The evaluation script evaluates the language on the test
cards to determine the result and the action to take. This script
consists of a simple parser to evaluate an "if-then-else"
statement and provide branching to other cards as necessary or as
dictated by the results of the "if" . The following is the BNF for
the test language.

. .= <test - card - statement> .. 'if' <conditional> I 'ifopt'
<conditional>

ccondit ional>

<expression>

. .. .= <expression> 'then' <action> 'else'
<action>

..- . .- <simple expression> I
<parenthetical - expression>

473

< p a r e n t h e t i c a l - e x p r e s s i o n > ::= ' (I <expres s ion>

<simple e x p r e s s i o n > = < s t a t u s card id> < s t a t u s > I
-

< s t a t u s c a r 3 id>-<s ta tus> < o p e r a t o r >
<e xpre sSi on>-

< s t a t u s card id> - - ::= <test card id> I <symptom card id> - - - -

< s t a t u s > = 'good' I 'bad'

Coperat o r > = ' o r ' I ' a n d '

< a c t i o n >

<test card - i d> -

. .- ..- <test card id> I
<conc lus ion - card - id> I ' r e t u r n '

. .- ..- t h e name of a test card (there must
be no i n t e r v e n i n g b l a n k s)

<symptom - card - id> = t h e name of a symptom card (t h e r e
must be no i n t e r v e n i n g b lanks)

. .. .= t h e name o f a conc lus ion card
(there must be no i n t e r v e n i n g b l a n k s)

<conc lus ion - card - i d >

NOTE: w h i t e space must s e p a r a t e a l l t okens

T h e language o f f e r s two v e r s i o n s o f t h e i f s t a t e m e n t : t h e
' i f ' and t h e ' i f o p t ' . The p a r s e r e v a l u a t e s t h e ' i f ' v e r s i o n
comple te ly , regardless of whether t h e outcome can be t r u e o r
false. The ' i f o p t ' v e r s i o n ceases e v a l u a t i o n as soon as t h e
outcome can be de termined . For example, i n t h e s t a t e m e n t ' i f A and
B and C ' , i f A i s fa l se t h e e n t i r e s t a t e m e n t e v a l u a t e s fa lse .
The re fo re , under t h e ' i f o p t ' v e r s i o n , t h e e v a l u a t i o n would cease
and t h e 'e lse ' p a t h would be chosen.

T h e names o f the cards must be used i n t h e t e x t d e s c r i b i n g
the c o n d i t i o n a l p a r t o f t h e t e s t . When t h e e v a l u a t i o n s c r i p t
e n c o u n t e r s an i d e n t i f i e r (card I D) , it examines t h e s t a t u s l i s t t o
f i n d o u t i f t h e s t a t u s of t h e test o r symptom has a l r e a d y been
de termined . If so, it c o n t i n u e s the e v a l u a t i o n . I f n o t , it pushes
t h e name o f t h e card c o n t a i n i n g t h e c u r r e n t tes t and per forms a
"go t o " the card name f o r which t h e s t a t u s i s unknown. I f t h a t
happens t o be a t e s t card t h e n t h a t card i s d i s p l a y e d and when t h e
u s e r chooses "cont inue" t h a t card name i s pushed on t h e tes t s t a c k
and a message i s s e n t t o e v a l u a t e t h e t e s t on t o p o f the tes t
s tack . I f t h e c a r d w i t h the unknown s t a t u s i s a symptom card, t h a t
card i s d i s p l a y e d and t h e u s e r chooses "good" o r "bad" f o r t h a t
symptom. The s c r i p t f o r t h e "good" o r "bad" b u t t o n s sends a
message t o t h e s t a t u s message hand le r t o r e c o r d s t a t u s and t h e n
sends a message t o e v a l u a t e t h e tes t on t o p of t h e t es t s tack . The
card names direct n a v i g a t i o n through t h e d i a g n o s t i c and t h e
e v a l u a t i o n scr ipt r e a l l y makes no d i s t i n c t i o n between tes t cards
and symptom cards.

4 7 4

Likewise, card names must be used for the "action" part of
the test description. If the conditional part of a test
description on a test card evaluates true the evaluation script
performs a "go to" the name of the card following the "then"
keyword. If the evaluation proves false the evaluation script
performs a "go to" the card name following the "else" keyword.
These cards may be test cards or conclusion cards. The "return"
keyword presents an exception in that when it is encountered, the
evaluation script sends a message to perform an evaluation of the
test on top of the stack.

In the following example, all names in the conditional part
of the if statement are test card names and both names in the
action part of the test point to another test card. In this
example the evaluation would continue at the test called
"NextTest" regardless of the outcome of the tests named in the
conditional part. The user could prevent this if any of the tests
in the conditional part found a bad component by electing to
restart the diagnostic.

if SSMECScaling good or
DPM good or
ADC good or
Hardware good or
GainDAC good or
OffsetDAC good or
HardwareSIASwitch then
NextTest else
Next Test

In the following example, the conditional part of the test
description names only symptoms. In this example, the evaluation
would branch to the conclusion card "SSMECScalingBad" if the
results of the test were true and would return to evaluate the
previous test if the result was false. In this example all of the
conditional part of the test consists of symptoms. Also, notice
that since the "ifopt" keyword was used, not all symptoms would
necessarily be evaluated. For example, if the symptom "OffsetVDT"
proved good, the "else" path would be taken since the entire
conditional must be false. However, since the status of "GainVDT"
had already been evaluated, its status would be recorded and that
symptom card would never show up again during this session. Note
also that if the evaluation reached "GainDPM" and "GainDPM" was
good, the evaluation would terminate and take the "then" path
since that was all that was required at that point to make the
entire statement true.

ifopt GainVDT bad and
OffsetVDT bad and
LocalPotVDT bad and
(GainDPM good or
OffsetDPM good or
LocalPotDPM good) then

475

SSMECScalingBad else
return

The fact that card names are used to direct the evaluation
allows the system to function as the basis for any diagnostic type
application. The evaluation script really knows nothing of the
target system, but merely evaluates the boolean expression on the
test cards and uses the card names to direct its action. Thus,
this system could provide a shell for the development of
prototypes for other diagnostic systems.

Conclusions

Excluding the two false starts, the diagnostic part of this
system required about 50% of the effort that was spent on the
Turbo Prolog version. The majority of this gain was due the the
ease of implementing the tutorial and graphics parts. In these
areas, the development gains afforded by Hypercard could range
from 50-90% over a similar system developed using Turbo Prolog,
depending on the amount of graphics used. A l s o , Hypercard's abili-
ty to include digitized photographs on the cards represents a
significant advantage in developing tutorial systems. Another
significant advantage of using Hypercard, at least for developing
tutorial systems, is that the developer need not be a programmer
to develop a successful system.

There are, however, some shortcomings in Hypercard. The
execution time for the evaluation of the rules in the Hypercard
system is much slower than that in Turbo Prolog. This fact is
masked somewhat by the difference in the speed of the graphics of
the two systems. Other shortcomings include the limitation on the
size of the cards, that color is not supported, that it does not
support grey scale graphics, and its lack of selectable fonts for
the text in fields.

Overall, Hypercard provides a useful tool for developing
sophisticated tutorial systems and moderately sophisticated
diagnostic systems. Its ability to easily combine graphics, text,
digitized photographs, animation, and sound, as well as its
ability to function as a hypermedia tool makes it very powerful
for developing tutorial systems. These capabilities also offset
some of its limitations when developing diagnostic systems where
these functions would prove useful.

476

